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Abstract
We study the influence of entanglement on the relation between the statistical
entropy of an open quantum system and the heat exchanged with a low
temperature environment. A model of quantum Brownian motion of the
Caldeira–Leggett type—for which a violation of the Clausius inequality has
been stated by Th M Nieuwenhuizen and A E Allahverdyan (2002 Phys. Rev.
E 66 036102)—is re-examined and the results of the cited work are put into
perspective. In order to address the problem from an information theoretical
viewpoint a model of two coupled Brownian oscillators is formulated that can
also be viewed as a continuum version of a two-qubit system. The influence
of an additional internal coupling parameter on heat and entropy changes is
described and the findings are compared to the case of a single Brownian
particle.

PACS numbers: 05.40.Jc, 03.65.Yz, 03.67.−a

1. Introduction

Open systems are subject to dissipation of energy and fluctuations in their degrees of freedom.
Within the theory of quantum dissipative systems [1, 2] the starting point in describing
noise and damping is the Hamiltonian Htot = HS + HE + HSE where the Hamiltonian
of the total system Htot is expressed as a sum of the Hamiltonian of the subsystem of
interest HS , a Hamiltonian HE modelling the environmental degrees of freedom and an
interaction term HSE . For quantum objects this coupling to the environment in addition
leads to the phenomena of decoherence and entanglement. These entanglement effects play
an important role if the bath temperature is low or the system–bath interaction is strong.
Under the unitary evolution of the density operator ρtot(t) = U(t, 0)ρtot(0)U †(t, 0) with
U(t, 0) = exp

[− i
h̄
Htott

]
an initial product state of subsystem S and bath E evolves into a
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correlated state with ρtot(t) �= ρS(t) ⊗ ρE(t) for t > 0. For zero temperature the total closed
system ρtot is in its ground state and therefore the von Neumann entropy S(ρtot(t)) stays zero
for all times. But for t > 0 the pure state of the whole system is an entangled state of subsystem
and bath with S(ρtot(t)) � S(ρS(t)) + S(ρE(t)). The subsystem therefore is in a mixed state
with S(ρS(t)) > 0 even for zero bath temperature.

In most applications, especially in quantum optics [3, 4], the coupling between system and
bath can be assumed to be weak which allows neglecting entanglement effects (Born–Markov
approximation) and applying the formalism of Markovian quantum master equations. In this
case the reduced density matrix of the open system is Gibbsian. If the total Hamiltonian is
harmonic, a Gaussian initial state of the subsystem remains Gaussian for all times. In the
strong-coupling quantum regime, the stationary state of the subsystem ρS(t) is therefore still
Gaussian but non-Gibbsian due to the entanglement with the bath. Its density matrix ρS(t)

is completely characterized by the first and second moments of the relevant operators. The
Heisenberg equation of motion for these operators is the quantum Langevin equation [5, 6].
The characterizing moments are determined by the stationary values of the quantum Langevin
equation and can be calculated alternatively by applying the quantum fluctuation-dissipation
theorem. The statistical entropy associated with that stationary quantum state is the von
Neumann entropy. The systems exchange of heat with the environment—which is defined as
the change in energy due to redistributions in phase space—is related to the thermodynamic
entropy by the Clausius inequality. This thermodynamic entropy can only be identified with
the statistical entropy when ρS takes the form of the canonical density matrix. This is just the
case for negligible interaction between subsystem and environment.

From an information-theoretical point of view, above considerations become important.
The Landauer principle [7, 8] which is based on the Clausius inequality states that ‘many-to-
one’ operations like erasure of information require the dissipation of energy. Deleting one bit
of information is accompanied by a released amount of heat of at least kT ln 2. This erasure
is connected with a reduction of entropy, and thus cannot be realized in a closed system.
Therefore the information-carrying system has to be coupled to its environment. To avoid
a rapid destruction of the necessary quantum coherence the quantum subsystem should be
placed in a low temperature environment. Thus the coupling might be relatively strong
compared to thermal energy. Since the Landauer principle is dealing with information
processing and erasure, the relevant entropy is the statistical entropy of the system. Statistical
entropy and heat are defined separately. Thus, the relation between both the quantities can be
examined.

The purpose of our paper is to study deviations from the Clausius inequality and Landauer
bound respectively in the strong-coupling quantum regime. An analytic treatment of this
issue is given within the framework of the Caldeira–Leggett model of quantum Brownian
motion.

In the first part of this paper we want to discuss quite controversial recent work [9–12]
and put some of those results into perspective. Therefore the quantum Langevin equation of
a harmonically bound quantum particle based on the Caldeira–Leggett model is presented.
The stationary moments that are obtained from this equation characterize the reduced density
matrix completely. This density matrix is used to define thermodynamic quantities. Then,
changes in heat and in statistical entropy for adiabatic parameter variations are compared and
the applicability of the Clausius inequality in the strong coupling/low temperature quantum
regime is discussed. In the second main part we will focus on a model of Brownian motion
of two coupled oscillators, which can be understood as a continuum version of a two-qubit
system [13]. With regard to recent work done on continuous variable computing [14, 15] the
impact on quantum information theory is studied. It will become clear that additional internal
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degrees of freedom can lead to different results as in the case of quantum motion of a single
Brownian particle.

2. Caldeira–Leggett model of quantum Brownian motion

Brownian motion is a prominent example of an open quantum system [16]. The standard
model of quantum Brownian motion, often referred to as the Caldeira–Leggett model [17, 18],
is a system-plus-reservoir model. The whole system is governed by the Hamiltonian

Htot = p2

2m
+ V (q) +

N∑
i=1

[
p2

i

2mi

+
miω

2
i

2
x2

i

]
+

N∑
i=1

[
−cixiq +

c2
i

2miω
2
i

q2

]
(1)

where q and p are the Heisenberg operators for coordinate and momentum of the Brownian
particle moving in the harmonic potential V (q) = 1

2mω2
0q

2. The particle is coupled to a bath
of N harmonic oscillators with variables xi and pi and uniformly spaced modes ωi = i�. The
interaction is bilinear in coordinates of system q and bath xi . For the coupling-parameters
ci the so-called Drude–Ullersma spectrum [19] with large cutoff-frequency � and coupling
constant γ is chosen: ci =

√
2γmiω

2
i ��2

/
π

(
ω2

i + �2
)
. The bath is characterized by its

spectral density J (ω), which takes the form of the Drude spectrum J (ω) = γω�2/(ω2 + �2)

in the thermodynamic limit (sending � → 0, N → ∞ and keeping � = N� = const). The
potential renormalization term

∑
c2
i

/(
2miω

2
i

)
q2 ensures that V (q) remains the bare potential.

Neglecting this self-interaction term, the positive definiteness of the total Hamiltonian Htot

would just be guaranteed for γ � mω2
0

/
� and—since � is large—would restrict the

applicability of the model to weak-coupling approximations (γ � mω0).

2.1. Quantum Langevin equation

From the Hamiltonian (1) the Heisenberg equations of motion for the operators q and p and
the bath variables xi, pi are received. By eliminating the bath degrees of freedom the quantum
Langevin equation [5, 6] of a particle moving in the potential V (q) can be derived:

mq̈(t) +
dV (q)

dq
+

∫ t

0
dt ′γ (t − t ′)q̇(t ′) = η(t) − q(0)γ (t). (2)

The stochastic character of this integro-differential equation with the friction kernel γ (t) =
γ� e−�|t | comes into play by considering the initial distribution of the bath variables which
determines the noise term η(t):

η(t) =
N∑

i=1

ci

(
xi(0) cos ωit +

pi(0)

miωi

sin ωit

)
. (3)

Assuming an uncorrelated initial state with the reservoir being in canonical equilibrium at
temperature T = β−1, ρE ∼ exp(−βHE), η(t) is a stationary Gaussian operator noise with
〈η(t)〉ρE

= 0 and the correlation function [3]:

K(t − t ′) = 1

2
〈η(t)η(t ′) + η(t ′)η(t)〉ρE

= h̄

π

∫ ∞

0
dω

γ�2ω

�2 + ω2
coth

(
1

2
βh̄ω

)
cos ω(t − t ′). (4)

In the case of initial correlations of particle and bath the correlation function contains additional
terms which affect the dynamics on the timescale t � 1/�. To fully characterize the reduced
dynamics it is thus important to specify the initial preparation.
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2.2. Stationary state

The relaxation dynamics of the moments 〈q2(t)〉 and 〈p2(t)〉 described by equation (2), end
up in a stationary state for t → ∞. The stationary correlations can be calculated alternatively
by applying the quantum fluctuation-dissipation theorem [20], which establishes a connection
between the quantum mechanical dynamical susceptibility χ̃ (ω) = ∫ ∞

−∞ χ(t − t ′) eiωt =[
mω2

0 − mω2 − iωγ̃ (ω)
]−1

and the equilibrium fluctuations 〈q2〉 and 〈p2〉:

〈q2〉 = h̄

2π

∫ ∞

−∞
dω coth

(
1

2
βh̄ω

)
χ̃ ′′(ω), (5)

〈p2〉 = h̄

2π

∫ ∞

−∞
dω m2ω2 coth

(
1

2
βh̄ω

)
χ̃ ′′(ω). (6)

If the dissipative part of the susceptibility χ̃ ′′(ω) of the non-Markovian damped oscillator
with three characteristic frequencies λ1, λ2 and λ3 (poles in the complex plane) is inserted, an
analytic expression for equations (5) and (6) is derived [1]:

〈q2〉 = h̄

mπ

3∑
i=1

(λi − �)ψ
(

βh̄λi

2π

)
(λi+1 − λi)(λi−1 − λi)

− T , (7)

〈p2〉 = m2ω2
0〈q2〉 +

h̄γ �

π

3∑
i=1

λiψ
(

βh̄λi

2π

)
(λi+1 − λi)(λi−1 − λi)

, (8)

where ψ(x) is the Digamma function and λ0 = λ3, λ4 = λ1. The stationary state of the
Brownian particle is fully characterized by the variances (7) and (8) which determine the
stationary density matrix ρS of the subsystem [1, 21]:

ρS(q, q ′) = 1√
2π〈q2〉

exp

[
− (q + q ′)2

8〈q2〉 − (q − q ′)2

2h̄2/〈p2〉
]

. (9)

This reduced density matrix is different from the canonical equilibrium density matrix
ρth ∼ exp(−βHS) for any finite coupling γ . The statistical entropy of the quantum state
ρS—the von Neumann entropy S(ρS)—is [9, 22]

S(ρS) = −Tr[ρS ln ρS] = −
∑

n

pn ln pn

=
(

v +
1

2

)
ln

(
v +

1

2

)
−

(
v − 1

2

)
ln

(
v − 1

2

)
, (10)

with Boltzmann constant set to kB = 1 and the subsystems phase space volume v defined by

v = 1

h̄

√
〈q2〉〈p2〉, (11)

as well as the eigenvalues of ρS(q, q ′),

pn = 1/(v + 1/2)[(v − 1/2)/(v + 1/2)]n, (12)

which are obtained as solution of the problem
∫

dx ′ρS(q, q ′)fn(q
′) = pnfn(q), where the

eigenfunctions fn are given by fn ∼ √
cHn(cq) e−c2q2/2 with Hermite polynomials Hn and

c = [〈p2〉/(h̄2〈q2〉)]1/4.
The von Neumann entropy of the subsystem is increased with raising the coupling γ at

a given temperature (figure 1). Even at T → 0 the subsystems entropy is larger than zero.
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Figure 1. Temperature dependence of the entropy expressions S(ρS) and Sp for different
values of the system–bath couplings γ (in units of mω2

0/�). Dark lines from bottom to top:
S(ρS)γ=0; S(ρS)γ=1; S(ρS)γ=5. Grey lines: Sp,γ=1 (dashed) and Sp,γ=5. Other parameters:
ω0 = 1, m = 1, � = 10, h̄ = 1.

This effect is due to the correlations between subsystem and bath which prevent the subsystem
from reaching a pure state for T → 0. The probabilities to find the subsystem in an exited state
depend on the coupling to the environment [23]. In the weak coupling limit, where ρS = ρth,
expression (10) gives the entropy

S(ω0, T ) = βh̄ω0

eβh̄ω0 − 1
− ln(1 − e−βh̄ω0) (13)

of an harmonic oscillator in canonical equilibirum.
It is important to remark here, that the entropy (10) deviates from the difference of the

total entropy S(ρtot) and the entropy of the bath in the absence of the particle S(ρE)γ=0 which
is given by [24]

Sp = 1

π

∫ ∞

0
S(ω, T )Im

{
d ln χ̃ (ω)

dω

}
dω. (14)

In the same way the thermodynamic potentials Fp and Up can be derived which are related by
Sp = β(Up − Fp). One can see from figure 1 that Sp vanishes at T → 0 whereas S(ρS) does
not. Proceeding in this way, the entropy Sp also contains the part of entropy that is associated
with the quantum mechanical correlations of particle and bath. Since this conditional
entropy is negative for entangled systems, the statistical entropy of the Brownian oscillator
alone is underestimated by Sp. Thus, in our further treatment we will concentrate on the
entropy S(ρS).

2.3. Thermodynamics of adiabatic changes

Nieuwenhuizen and Allahverdyan [11] examined the validity of the Clausius inequality
respectively the Landauer bound in the strong coupling quantum regime. They found a
violation of these principles at very low temperatures due to the existing correlations between
subsystem and bath. With respect to quantum information theory they concluded that
quantum mechanical information carrier therefore could be more efficient than their classical
counterparts. A controversial subject in this context is the appropriate choice of heat and
entropy expressions. Our purpose in this section is to clarify this issue and to put the findings
of Nieuwenhuizen and Allahverdyan into perspective.
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The internal energy of the Brownian oscillator can be defined as the mean energy in the
stationary state [9]:

US = Tr[HSρS] = 〈HS〉 = 1

2m
〈p2〉 +

1

2
mω2

0〈q2〉. (15)

This expression differs from the equivalent to (14) defined internal energy Up. The difference
Up − US can be interpreted as the interaction energy Uint ( �= 〈HSE〉!) which is related to the
free energy Fp by

Uint = Up − US = �
∂Fp

∂�
. (16)

Choosing the parameter values m,ω0 and � as in figure 1 the ratio τ = Uint/Up at zero bath
temperature is given by τ(γ=mω2

0/�) ≈ 0.03 and τ(γ=5mω2
0/�) ≈ 0.10. For kT = h̄ω0 the ratios

are τ(γ=mω2
0/�) ≈ 0.01 and τ(γ=5mω2

0/�) ≈ 0.05, respectively.
The total differential dUS of the internal energy US ,

dUS = Tr[ρS dHS] + Tr[HS dρS] = δW + δQ (17)

can be divided into two parts [25]. The first term results from the change of the parameters m
and ω0 in the Hamiltonian, so it is a mechanical, non-statistical object and will be referred to
as work δW :

δW = mω0〈q2〉 dω0 +

(
ω2

0〈q2〉
2

− 〈p2〉
2m2

)
dm. (18)

The second term Tr[HS dρS] represents the variation of US due to the statistical redistribution
of the phase space, which will be associated with the change in heat δQ:

δQ = δωQ + δmQ

with

δωQ =
(

1

2
mω2

0
∂〈q2〉
∂ω0

+
1

2m

∂〈p2〉
∂ω0

)
dω0, (19)

δmQ =
(

1

2
mω2

0
∂〈q2〉
∂m

+
1

2m

∂〈p2〉
∂m

)
dm. (20)

Now the validity of the Clausius inequality

δQ � T dS (21)

can be evaluated. The second law of thermodynamics in the formulation by Clausius states
that in a quasi-static process, during which the system at all times passes through equilibrium
states, one has dSth = δQ/T . The thermodynamic entropy Sth defined by the Clausius equality
can only be identified with the statistical entropy S(ρS) at thermal equilibrium where ρS = ρth

with ρth = Z−1 exp(−βHS) and Z = Tr exp(−βHS), because

dS = −Tr[dρth ln ρth] = Tr[dρth ln Z] + β Tr[dρthHS]

= βTr[ρthHS] = βδQ = dSth. (22)

Concerning the Landauer principle, which is based on the Clausius inequality, but deals
with information processing and erasure, the relevant entropy is the statistical entropy S(ρS).
Therefore we want to compare changes in the statistical entropy dS to changes in heat δQ

induced by adiabatic variation of the systems parameters. The total differential of the von
Neumann entropy (10) is given by

dS = −Tr[dρS ln ρS] = ln

(
v + 1

2

v − 1
2

)
dv. (23)
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temperature T for different values of the system–bath coupling γ (in units of mω2

0/�): 0.5
(narrow dashed), 1 (dashed), 2.5 (solid line). The oscillator parameters are chosen to be ω0 = 1
and m = 1. The cutoff-frequency is set to � = 10 and h̄ = 1.
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Figure 3. Phase space volume v versus mass m for different T-values. From bottom to top:
T = 0; 0.1; 0.2; 0.25. Other parameters: γ = 1, � = 500, h̄ = 1. (a) Oscillator potential
V (q) = 1

2 aq2 with fixed spring constant a = 1 (see also [11]). (b) Oscillator potential
V (q) = 1

2 mω2
0q

2 with frequency ω0 = 1.

Thus, the sign of the change in S(ρS) is determined by the sign of the change in v. Note here
that the parameters m and ω0 are chosen as independent quantities, so that we can examine
δQm � T dSm and δQω � T dSω separately.

Figure 2 shows the temperature dependence of the changes in heat δQm and of the term
T dSm for different coupling strength γ . While δQm is always positive, which means that the
Brownian particle absorbs heat during an adiabatic increase of mass, the change of entropy
and therefore the product T dSm remains negative. In the high-temperature limit one has
δQm → 0 as well as T dSm → 0 and therefore the behaviour of an uncoupled harmonic
oscillator characterized by (13). The term T dSm converges relatively slowly towards zero
because of the increasing factor T. The smaller the coupling γ , the faster is the convergence
of the two terms δQm and T dSm. If the temperature T goes to zero, then the product T dSm

does as well. The amount of heat δQm exchanged with the bath stays positive even in this
limit and equals −dmUint. Thus, the Brownian particle can extract heat from the bath even at
T = 0, a fact that was already extensively discussed in [9, 11].

Figure 3(a) gives results of the cited work [11]. Nieuwenhuizen and Allahverdyan studied
the influence of adiabatic changes in mass on the phase space volume v given by equation (11).
At T = 0 one receives a monotonic decreasing function which should converge with increasing
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mass to the minimal value vmin = 1/2 which results from the uncertainty relation. They found,
that at moderate temperatures the phase space volume first decreases for low masses, then
reaches a minimum and finally increases nearly linearly with the mass. The increasing phase
space volume means a positive sign for the entropy change dS. Therefore the authors conclude
that the different signs of δQ and T dS would only occur at very low temperatures due to
quantum correlations between system and bath.

In contrast to that, figure 3(b) shows the mass dependence of the phase space volume using
the moments defined by equations (7) and (8). One can clearly see that even for moderate
temperatures the phase space volume does not increase, but reaches a temperature-dependent
limit value. This value is given by the phase space volume of an uncoupled harmonic oscillator
in canonical equilibrium: vth = 1

2 coth βh̄ω0/2. Both, sending m → ∞ or coupling γ → 0,
finally leads to the standard case of the quantum Gibbs distribution.

The differences between our findings and the results in [11] which become obvious
in figures 3(a) and (b) can be explained as follows: in the paper by Nieuwenhuizen and
Allahverdyan [11] the harmonic potential V (q) = 1

2mω2
0q

2 is expressed by 1
2aq2 with spring

constant a. Varying m and keeping a fixed leads to the results of figure 3. But since the limit
m → ∞ and γ → 0 should lead to the same result of v = 1/2 at T = 0, this choice of the
potential is inconsistent. In figure 3 the phase space volume at T = 0 does not reach the value
v = 1/2 even for high masses (instead v ≈ 0.6 for the given parameter values). In order to
receive the correct expressions for 〈q2〉, 〈p2〉 and U in the weak coupling or high temperature
limit one has to set a = mω2

0, which has also been done in the cited work [11] in different
contexts.

Choosing the potential V (q) = 1
2mω2

0q
2, which is then affected by the variation of the

mass, shows that the anomaly of different signs is an even stronger effect than found in [11].
This indicates that not only quantum correlations at low temperatures might play a role but
also classical correlations between the damped oscillator and its environment at moderate
temperatures.

3. Quantum Brownian motion of two coupled harmonic oscillators

In order to study the influence of additional parameters on the results stated above we introduce
a model of quantum Brownian motion of two coupled oscillators which can be viewed as a
continuum version of a two-qubit system. In contrast to former work concerning the relaxation
dynamics of two coupled oscillators [13, 26] we focus on the stationary state. The Hamiltonian
HS ′ of the open quantum system S ′ now reads

HS ′ = HA + HB + HAB, (24)

where HA and HB are the Hamiltonians of the two harmonic oscillators A and B with masses
ma,mb and frequencies ωa and ωb. HAB describes the interaction between them. Before
deriving a quantum Langevin equation it is necessary to discuss different couplings between
the oscillators as well as between the system HS ′ and the bath HE and to choose an appropriate
model.

3.1. Coupling between the two oscillators

In the framework of quantum optics the coupling between oscillators is often chosen to
HAB = −Dqaqb with coupling parameter D. In this case one problem is the constraint
D � √

mambωaωb as a condition for real eigenfrequencies of the system which restricts the
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range of allowed parameter variations. In our further treatment we will concentrate on the
interaction Hamiltonian

HAB = 1
2D(qa − qb)

2. (25)

This Hamiltonian is clearly inspired by its mechanical analogy—a restoring force proportional
to the relative distance of the two oscillators—and leads to real eigenfrequencies of the system
HS ′ for all values of the coupling parameter D.

3.2. Coupling between system and bath

In order to study the case of strong system–bath coupling γ , the positive definiteness of the
Hamiltonian has to be guaranteed in the range of relevant γ -values. Therefore we will discuss
different couplings between system and bath in the following section.

3.2.1. Oscillators separately coupled to the bath. If each oscillator is coupled separately to
the bath according to the coupling in (1) then we receive the following interaction Hamiltonian
HS ′E :

HS ′E =
N∑

i=1

[
−cixi(qa + qb) +

c2
i

2miω
2
i

(
q2

a + q2
b

)]
. (26)

The equation for the eigenvalues ν of the total system

Htot = HA + HB + HAB + HE + HS ′E (27)

reads

ν2 −
(

ω2
a +

D

ma

)
=

∑
i

c2
i

mami

(
ν2 − ω2

i

) ν2

w2
i

−
1

mamb

(
D − ∑

i

c2
i

mi(ν2−ω2
i )

)2

ω2
b + D

mb
+

∑
i

c2
i

mbmi(ν2−ω2
i )

ν2

ω2
i

− ν2
. (28)

Figure 4(a) shows the influence of the system–bath coupling strength γ on the eigenfrequencies
of a finite system consisting of the two oscillators coupled to an environment of eight oscillators.
The lowest eigenvalue ν1 decreases with increasing coupling strength and becomes imaginary
at a critical value

γcrit =
(

2π

�

N∑
i=1

�2

ω2
i + �2

)−1 [√(
maω2

a + D
)(

mbω
2
b + D

) − D

]
(29)

which means exponentially increasing amplitudes and therefore instability of the whole system.
In the thermodynamic limit this critical value becomes very small, so that this model is only
suitable in the weak coupling case.

3.2.2. Bath coupling to the centre of mass. A more adequate model is the bath-coupling
attached to the centre of mass R of the system HS ′ while the relative motion is an uncoupled
internal degree of freedom. The system–bath interaction could then be described by the
Hamiltonian

HS ′E =
N∑

i=1

[
−cixiR +

c2
i

2miω
2
i

R2

]
. (30)
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Figure 4. Eigenfrequencies of a finite model with N + 2 = 10 oscillators versus the system–bath
coupling strength γ (in units of m�). Parameters: ωa = 2, ωb = 5,m = ma,b = 1,D = 2 and
� = 1, � = N� = 8. (a) Oscillators separately coupled to the bath with eigenfrequencies ν given
by equation (28). The critical value γcrit is given by equation (29). (b) Bath coupling to the centre
of mass with eigenfrequencies ν given by equation (31).

This interaction could also be understood as a model of two oscillators separately coupled to
the bath including a self-interaction term proportional to the product qaqb. The coupling leads
to the following eigenvalue equation of the total system Htot:

ν2 − 1

M

(
maω

2
a + mbω

2
b

) =
N∑

i=1

c2
i

Mmi

(
ν2 − ω2

i

) ν2

ω2
i

− µ
(
ω2

a − ω2
b

)2

mbω2
a + maω

2
b + M

µ
D − Mν2

. (31)

In figure 4(b) one can recognize that the lowest eigenvalue is only slightly reduced by increasing
the coupling strength and remains real for all γ -values.

Since this interaction term assures the positive definiteness of the total Hamiltonian we
will use this system–bath coupling in the further examination. Additionally this coupling
allows us to transform the system easily to normal coordinates which simplifies the analysis
in the case of identical oscillators. Physically speaking it can be interpreted as a model of
a Brownian particle with an internal degree of freedom—in this case harmonic vibrations
described by equation (25).

3.3. Langevin equation of two coupled Brownian oscillators

By transforming the Hamiltonian HS onto coordinates for the centre of mass R = 1/M(maqa +
mbqb) and the relative coordinate x = (qa − qb) (with total mass M and reduced mass µ) and
eliminating the bath variables, the following system of coupled equations for the Heisenberg
operators x and R can be written down:

ẍ = −�2
xx(t) − (

ω2
a − ω2

b

)
R(t) (32)

R̈ = −�2
RR(t) − 1

M

∫ t

0
γ (t − t ′)Ṙ(t) dt ′ − γ (t)R(0) − µ

M

(
ω2

a − ω2
b

)
x(t) + η(t) (33)

with the frequencies

�2
x = 1

M

(
mbω

2
a + maω

2
b +

M

µ
D

)
(34)

�2
R = 1

M

(
maω

2
a + mbω

2
b

)
(35)
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and damping term γ (t) and noise term η(t) as defined in section 2.1. Solving equation (32) as
an inhomogeneous differential equation and inserting the solution into (33) gives a Langevin
equation for the centre of mass R with new damping term γ̃ (t) and new noise term η̃(t):

MR̈ +
dṼ (R)

dR
+

∫ t

0
dt ′γ̃ (t − t ′)Ṙ(t ′) = η̃(t) − R(0)γ̃ (t) (36)

which describes the motion of R in the effective potential Ṽ (R) = 1
/

2M�̃2
RR2 with frequency

�̃2
R = �2

R − µ
(
ω2

a − ω2
b

)2

M�2
x

(37)

influenced by the generalized damping and noise

γ̃ (t − t ′) = γ�e−�|t−t ′ | + µ

(
ω2

a − ω2
b

)2

�2
x

cos �x(t − t ′) (38)

η̃(t) =
N∑

i=1

ci

[
xi(0) cos(ωit) +

pi(0)

miωi

sin(ωit)

]

+ µ
(
ω2

b − ω2
a

) [
x(0) cos(�xt) +

px(0)

M�x

sin(�xt)

]
. (39)

In the case of identical oscillators equations (32) and (33) are decoupled. The relative
coordinate performs a harmonic oscillation and for R the Langevin equation of a Brownian
particle with mass M and oscillator frequency �R is received,

MR̈ + M�2
RR +

∫ t

0
dt ′γ (t − t ′)Ṙ(t ′) = η(t) − R(0)γ (t), (40)

which is equivalent to quantum Langevin equation (2) in the first part of this paper.

3.4. Stationary state

In order to calculate the stationary correlations for the general case we again apply the quantum
fluctuation-dissipation theorem.

From equation (36) one obtains the dynamical susceptibility χ̃ ′′
R(ω) = [

M�̃2
R − Mω2 −

iωγ̃ (ω)
]−1

and can express the variance of the centre of mass by

〈R2〉 = h̄

2π

∫ ∞

−∞
dω χ̃ ′′

R(ω) coth

(
1

2
βh̄ω

)

= h̄

2π

∫ ∞

−∞
dω

γ�2ω

ξ 2�2 + (ξ + γ�)2ω2
coth

(
1

2
βh̄ω

)
(41)

where

ξ = M�2
R − Mω2 − µ

(
ω2

a − ω2
b

)2

�2
x − ω2

. (42)

Figure 5 shows the temperature dependence of the variance (41) in comparison to the limiting
cases:

〈R2〉th = h̄

2M�̃R

coth
1

2
βh̄�̃R for γ → 0 (43)

〈R2〉cl = kT

M�̃2
R

for T � m�̃2
R. (44)
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mb = 1,D = M�2
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R/�, (dark line). For increasing temperature 〈R2〉

converges to the limit cases 〈R2〉th (grey line) and 〈R2〉cl (dashed line) as given by equations (43)
and (44).

In the same way we can specify the variance of the centre of mass momentum PR:

〈P 2
R〉 = h̄

2π
M2

∫ ∞

−∞
dωχ̃ ′′

R(ω)ω2 coth

(
1

2
βh̄ω

)

= h̄

2π
M2

∫ ∞

−∞
dω

γ�2ω3

ξ 2�2 + (ξ + γ�)2ω2
coth

(
1

2
βh̄ω

)
(45)

as well as the variance of the relative coordinate x

〈x2〉 = 1

2π

∫ ∞

−∞
dωh̄ coth

(
1

2
βh̄ω

)
χ̃ ′′

x (ω)

= h̄

2π

∫ ∞

−∞
dω

(
ω2

a − ω2
b

)2(
�2

x − ω2
)2

γ�2ω coth
(

1
2βh̄ω

)
ξ 2�2 + (ξ + γ�)2ω2

(46)

and the corresponding momentum px

〈
p2

x

〉 = h̄

2π
µ2

∫ ∞

−∞
dω

(
ω2

a − ω2
b

)2(
�2

x − ω2
)2

γ�2ω3 coth
(

1
2βh̄ω

)
ξ 2�2 + (ξ + γ�)2ω2

. (47)

The stationary correlation 〈xR〉 is obtained by transforming on normal coordinates y =
ζx + R, z = x + ϑR. Because of 〈yz〉 = 0 in the stationary state one receives

〈xR〉 = ζ 〈x2〉 + ϑ〈R2〉
1 + ζϑ

(48)

where

ζ = − µ
(
ω2

a − ω2
b

)
M�2− − (

mbω2
a + maω

2
b + M/µD

)
ϑ = − M

(
ω2

a − ω2
b

)
M�2

+ − (
maω2

a + mbω
2
b

) (49)

and �± are the normal frequency of system (24) with HAB given by (25)

�±2 = 1

2

(
ω2

a + ω2
b +

D

µ

)
± 1

2

√(
ω2

a + ω2
b +

D

µ

)2

− 4D

(
ω2

a

mb

+
ω2

b

ma

)
− 4ω2

aω
2
b. (50)

Further correlations, such as 〈RPR〉, 〈xpx〉, 〈Rpx〉, . . . are zero in the stationary state.
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3.5. Thermodynamic of adiabatic changes

The stationary Gaussian state of the subsystem is completely characterized by the correlations
(41), (45)–(48). The internal energy again is defined as the stationary mean value of the
systems Hamiltonian (24):

US ′ = 1

2M

〈
P 2

R

〉
+

1

2µ

〈
p2

x

〉
+

1

2
µ�2

x〈x2〉 +
1

2
M�2

R〈R2〉 + µ
(
ω2

a − ω2
b

)〈xR〉. (51)

In the case of identical oscillators (ma,b = M/2, ωa,b = ω) the internal energy US ′ turns into

US ′ = 1

2M

〈
P 2

R

〉
+

1

2
Mω2〈R2〉 +

1

2
h̄�µ coth

(
1

2
βh̄�µ

)
, (52)

where
〈
P 2

R

〉
and 〈R2〉 are given by the moments defined in equations (7) and (8) with oscillator

parameters M and ω. We can apply the weak coupling limit to the (free) oscillation of the
relative coordinate so that the values 〈x2〉 and

〈
p2

x

〉
are determined by the quantum Gibbs

distribution of an uncoupled oscillator with mass µ and frequency �µ =
√

ω2 + D/µ. The
motion of R is described by equation (40) and leads to the stationary variances given by (7)
and (8).

In this case of identical oscillators the von Neumann entropy S(ρS ′) of the system HS ′ can
be expressed as sum of the entropy of the centre of mass coordinate SR and the entropy of the
relative coordinate Sx :

S(ρS ′) = Sx + SR, (53)

where SR and Sx are defined similar to equation (10) with the phase space volumes
vx =

√
〈x2〉〈p2

x

〉/
h̄ and vR =

√
〈R2〉〈P 2

R

〉/
h̄. The exchange of heat δQ and the change

in entropy dS(ρS ′) are defined equivalent to equations (17) and (23) by Q = Tr[HS ′ dρS ′ ] and
dS = −Tr[dρS ′ ln ρS ′ ].

We now want to study deviations from the Clausius inequality in the case of identical
oscillators. Regarding variation of the mass M the Clausius inequality reads

δQM � T dSM. (54)

With regard to an information theoretical viewpoint, we use again the statistical entropy instead
of the thermodynamic entropy Sth for which the Clausius equality—by definition—is fulfilled
for quasi-static processes.

In the weak-coupling case of a single harmonic oscillator with mass M, entropy and heat
are not affected by adiabatic variations of the mass: δQM = T dSM = 0. This is different in the
case of two coupled oscillators weakly interacting with the bath, where the additional coupling
parameter D leads to an increase of δQM and T dSM with rising temperature. Nevertheless
for γ → 0 the equality δQM = T dSM holds for all values of T and D. Furthermore, in this
weak coupling approximation one has δQM � 0 and dSM � 0 for all T and D.

The impact of a non-zero system–bath coupling γ can be studied from figure 6(a): the
exchanged amount of heat δQM is increased at a given bath temperature T, whereas the term
T dSM is reduced. Since the product T dSM becomes negative at low temperature, changes in
heat and entropy have opposite signs. This effect is more pronounced if the coupling γ rises.
For kT � h̄ω the two terms become equal.

If the coupling D between the oscillators is reduced (D → 0), the system behaves like a
single Brownian particle as could be supposed by comparing the dashed curves in figure 6(a)
to figure 2. For D → ∞ the behaviour is the same. This is shown by figure 6(b) which
gives the D-dependence of δQM and T dSM at a certain temperature T and coupling γ . One
can recognize that the values of δQM for D → ∞ and D → 0 are equal (as well as the
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Figure 6. Changes in heat δQM and entropy-term T dSM due to variations of the bath temperature T
(a) and the oscillator coupling D (b). The oscillator parameters are ω = ωa,b = 1 and
M = 2ma,b = 1. The cutoff-frequency is set to � = 10 and h̄ = 1. (Compare to figure 2.)
(a) δQM (dark lines) and T dSM (grey lines) versus T for various combinations of parameters
(D; γ ). Solid lines: (0.5; 1), Dashed lines: (0.01; 1). Dotted lines: (0.01; 0.5). (b) δQM (dark
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coupling γ = 0.5Mω2/� compared to weak coupling limit (narrow dashed line).
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of parameters where T dSM � 0. On the left: bath temperature T = 0.25h̄ω/k. On the right:
coupling γ = 0.5Mω/�. Further parameters are chosen as in figure 6.

values for T dSM ) and correspond with the results for a single Brownian oscillator. For higher
temperature, depending on the chosen parameter values of oscillators (M,ω) and bath (γ, �),
there may exist a range of D-values where the terms T dSM and δQM have equal signs. This
is shown by figures 7(a) and (b).

4. Summary and conclusions

We have discussed the statistical thermodynamics of quantum Brownian motion of two coupled
oscillators where only the centre of mass is coupled to a bath. This model can be interpreted
as a Brownian particle with an internal degree of freedom. We investigated especially the
strong coupling quantum regime. As in the case of single Brownian motion the quantum
correlations between subsystem and bath lead to deviations from the canonical equilibrium
thermodynamics.

With regard to continuous variable quantum computing we examined the relation between
changes in the subsystems statistical entropy and the exchange of heat with the environment.
We found that this relation deviates from the Clausius (in)equality at low temperatures due
to the existing correlations between system and bath. Related results of former work [9–11]
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were put into perspective. Concerning quantum information processing, the validity of the
Landauer principle which is based on the Clausius inequality but deals with the statistical
entropy seems indeed questionable—at least for open quantum systems which are non-weakly
interacting with a low temperature environment.

Our open quantum system with an internal degree of freedom shows additional effects.
The quantum Langevin equation which has been derived for a system of two coupled Brownian
oscillators describes the evolution of the Heisenberg operators. The stationary moments of
these operators characterize the reduced density matrix completely. This density matrix
contains all the accessible information about the quantum state. The statistical entropy of this
state is measured by the von Neumann entropy. Reducing this entropy by quasi-static parameter
variations is equivalent to a decrease in the information which is gained by a measurement.
In our model the direction of heat and entropy flow due to mass variations depends on the
coupling strength between both the oscillators. Already at moderate temperatures the flow
of heat and entropy occurs in the same direction, whereas in the model of single Brownian
motion this is reached only in the high temperature and weak coupling limit, respectively.
Therefore varying the coupling parameter offers the possibility of adjusting the ratio of heat
exchange and change in the subsystems entropy.

Of course, the resulting changes in heat and entropy depend on the chosen interaction
between the oscillators. As pointed out at the beginning of the third section, this coupling has
to be selected carefully to ensure the positive definiteness of the total Hamiltonian. We have
chosen a system–bath coupling to the centre of mass which fulfills this condition and which
allows us to derive an analytical results. The relative motion is then an uncoupled internal
degree of freedom. This interaction could also be understood as a model of two oscillators
separately coupled to the bath including a modified self-interaction Hamiltonian. Therefore
this model provides an adequate example for studying the influence of an additional degree of
freedom.

Furthermore, in view of future applications in continuous variable computing it will
also be of interest to study the dynamical properties of decoherence and correlations of the
two-mode state as well as the interplay between the external and internal coupling.
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